studio_proj.cpp 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208
  1. #pragma once
  2. #include "studio_proj.h"
  3. void proj::gauss_to_lonlat(const double& gx, const double& gy, double& lon, double& lat, const proj::param& p)
  4. {
  5. double centralMeridian = p.central;
  6. // 辅助项
  7. double n = (p.major_axis - p.major_axis * (1 - 1 / p.flatten)) / (p.major_axis + p.major_axis * (1 - 1 / p.flatten));
  8. double semiMinorAxis = p.major_axis * (1 - 1 / p.flatten);
  9. double firstEccentricitySquared = (p.major_axis * p.major_axis - semiMinorAxis * semiMinorAxis) / (p.major_axis * p.major_axis);
  10. double secondEccentricitySquared = (p.major_axis * p.major_axis - semiMinorAxis * semiMinorAxis) / (semiMinorAxis * semiMinorAxis);
  11. // 计算Y坐标对应的纬度
  12. double mu = (gy - 10000000.0) / (p.scale * semiMinorAxis);
  13. double phi = mu + (3 * n / 2 - 27 * n * n * n / 32) * sin(2 * mu) + (21 * n * n / 16 - 55 * n * n * n / 32) * sin(4 * mu) + (151 * n * n * n / 96) * sin(6 * mu) + (1097 * n * n * n * n / 512) * sin(8 * mu);
  14. // 计算X坐标对应的经度
  15. double lambda = gx - p.easting;
  16. double lambdaPrime = lambda / (p.major_axis * cos(phi));
  17. // 迭代计算纬度
  18. double phiPrime = phi;
  19. double phiNew = phi + (phiPrime - phi - lambdaPrime * cos(phi)) / (1 - firstEccentricitySquared * sin(phi) * sin(phi) - lambdaPrime * lambdaPrime * cos(phi) * cos(phi));
  20. while (fabs(phiNew - phiPrime) > 1e-10)
  21. {
  22. phiPrime = phiNew;
  23. phiNew = phi + (phiPrime - phi - lambdaPrime * cos(phiPrime)) / (1 - firstEccentricitySquared * sin(phiPrime) * sin(phiPrime) - lambdaPrime * lambdaPrime * cos(phiPrime) * cos(phiPrime));
  24. }
  25. phi = phiNew;
  26. // 转换为经纬度
  27. lat = RAD2DEG(phi);
  28. lon = RAD2DEG((centralMeridian + lambdaPrime * 180.0 / (AO_PI * p.major_axis * cos(phi))));
  29. }
  30. void proj::gauss_to_lonlat(const double& central, const double& gx, const double& gy, double& lon, double& lat)
  31. {
  32. double Y = gx, X = gy;
  33. Y -= 500000;
  34. double e1 = (1 - sqrt(1 - WGS84::E2)) / (1 + sqrt(1 - WGS84::E2));
  35. double M = X;
  36. double mu = M / (WGS84::A * (1 - WGS84::E2 / 4.0 - 3 * WGS84::E2 * WGS84::E2 / 64.0 - 5 * WGS84::E2 * WGS84::E2 * WGS84::E2 / 256.0));
  37. double phi1 = mu + (3 * e1 / 2 - 27 * e1 * e1 * e1 / 32) * sin(2 * mu) + (21 * e1 * e1 / 16 - 55 * e1 * e1 * e1 * e1 / 32) * sin(4 * mu) + (151 * e1 * e1 * e1 / 96) * sin(6 * mu) + (1097 * e1 * e1 * e1 * e1 / 512) * sin(8 * mu);
  38. double C1 = WGS84::E2 * cos(phi1) * cos(phi1) / (1 - WGS84::E2);
  39. double T1 = tan(phi1) * tan(phi1);
  40. double N1 = WGS84::A / sqrt(1 - WGS84::E2 * sin(phi1) * sin(phi1));
  41. double R1 = WGS84::A * (1 - WGS84::E2) / pow(1 - WGS84::E2 * sin(phi1) * sin(phi1), 1.5);
  42. double D = Y / N1;
  43. // 经纬度计算
  44. double phi = phi1 - (N1 * tan(phi1) / R1) * (D * D / 2 - (5 + 3 * T1 + 10 * C1 - 4 * C1 * C1 - 9 * e1) * D * D * D * D / 24 + (61 + 90 * T1 + 298 * C1 + 45 * T1 * T1 - 252 * e1 - 3 * C1 * C1) * D * D * D * D * D * D / 720);
  45. double lambda = DEG2RAD(central) + (D - (1 + 2 * T1 + C1) * D * D * D / 6 + (5 - 2 * C1 + 28 * T1 - 3 * C1 * C1 + 8 * e1 + 24 * T1 * T1) * D * D * D * D * D / 120) / cos(phi1);
  46. // 转换为度
  47. lat = RAD2DEG(phi);
  48. lon = RAD2DEG(lambda);
  49. }
  50. void proj::lonlat_to_gauss(const double& lon, const double& lat, double& gx, double& gy, const proj::param& p)
  51. {
  52. // 中央经线
  53. double L0 = p.central;
  54. // 将经纬度转换为弧度
  55. double lon_rad = DEG2RAD(lon);
  56. double lat_rad = DEG2RAD(lat);
  57. // 计算经差
  58. double lambda = (lon_rad - DEG2RAD(L0));
  59. // 辅助项
  60. double n = (p.major_axis - p.major_axis * (1 - 1 / p.flatten)) / (p.major_axis + p.major_axis * (1 - 1 / p.flatten));
  61. double semiMinorAxis = p.major_axis * (1 - 1 / p.flatten);
  62. double firstEccentricitySquared = (p.major_axis * p.major_axis - semiMinorAxis * semiMinorAxis) / (p.major_axis * p.major_axis);
  63. double secondEccentricitySquared = (p.major_axis * p.major_axis - semiMinorAxis * semiMinorAxis) / (semiMinorAxis * semiMinorAxis);
  64. // 计算N和T
  65. double radiusOfCurvature = p.major_axis / sqrt(1 - firstEccentricitySquared * sin(lat_rad) * sin(lat_rad));
  66. double tangentSquared = tan(lat_rad) * tan(lat_rad);
  67. double meridianCurvature = secondEccentricitySquared * cos(lat_rad) * cos(lat_rad);
  68. // 计算A和B
  69. double A = lambda * cos(lat_rad);
  70. double B = lambda * lambda * cos(lat_rad) * cos(lat_rad) / 2;
  71. // X坐标
  72. gx = radiusOfCurvature * (lambda + (1 - tangentSquared + meridianCurvature) * pow(A, 3) / 6 +
  73. (5 - 18 * tangentSquared + tangentSquared * tangentSquared + 72 * meridianCurvature - 58 * (1 - firstEccentricitySquared) / (1 + firstEccentricitySquared)) * pow(A, 5) / 120) +
  74. p.easting;
  75. // Y坐标
  76. gy = p.scale * (semiMinorAxis * (lat_rad - (1 - n + (5 * n * n) / 4 - (5 * n * n * n) / 4) * sin(2 * lat_rad) / 2 + (1 - (3 * n) / 2 + (21 * n * n) / 16 - (55 * n * n * n) / 32) * sin(4 * lat_rad) / 24 -
  77. (1 - (11 * n) / 4 + (413 * n * n) / 96 - (1231 * n * n * n) / 256) * sin(6 * lat_rad) / 720 + (1 - (15 * n) / 4 + (517 * n * n) / 64 - (5147 * n * n * n) / 256) * sin(8 * lat_rad) / 40320)) +
  78. 10000000.0;
  79. }
  80. void proj::lonlat_to_gauss(const double& central, const double& lon, const double& lat, double& gx, double& gy)
  81. {
  82. double lamb = DEG2RAD(lat);
  83. double phi = DEG2RAD(lon);
  84. // 将中央子午线转换为弧度
  85. double centralMeridianRad = DEG2RAD(central);
  86. // 计算高斯-克吕格投影公式中的参数
  87. double N = WGS84::A / sqrt(1 - WGS84::E2 * sin(lamb) * sin(lamb));
  88. double T = tan(lamb) * tan(lamb);
  89. double C = WGS84::E2 * cos(lamb) * cos(lamb) / (1 - WGS84::E2);
  90. double A = (phi - centralMeridianRad) * cos(lamb);
  91. double M = WGS84::A * ((1 - WGS84::E2 / 4.0 - 3.0 * WGS84::E2 * WGS84::E2 / 64.0 - 5.0 * WGS84::E2 * WGS84::E2 * WGS84::E2 / 256.0) * lamb -
  92. (3.0 * WGS84::E2 / 8.0 + 3.0 * WGS84::E2 * WGS84::E2 / 32.0 + 45.0 * WGS84::E2 * WGS84::E2 * WGS84::E2 / 1024.0) * sin(2.0 * lamb) +
  93. (15.0 * WGS84::E2 * WGS84::E2 / 256.0 + 45.0 * WGS84::E2 * WGS84::E2 * WGS84::E2 / 1024.0) * sin(4.0 * lamb) - (35.0 * WGS84::E2 * WGS84::E2 * WGS84::E2 / 3072.0) * sin(6.0 * lamb));
  94. // 计算 X, Y 坐标
  95. gy = M + N * tan(lamb) * (A * A / 2.0 + (5.0 - T + 9.0 * C + 4.0 * C * C) * A * A * A * A / 24.0 + (61.0 - 58.0 * T + T * T + 600.0 * C - 330.0 * WGS84::E2) * A * A * A * A * A * A / 720.0);
  96. gx = N * (A + (1.0 - T + C) * A * A * A / 6.0 + (5.0 - 18.0 * T + T * T + 72.0 * C - 58.0 * WGS84::E2) * A * A * A * A * A / 120.0) + 500000.0; // 中央子午线偏移+500000.0
  97. }
  98. void proj::mercator_to_lonlat(const double& mctx, const double& mcty, double& lon, double& lat)
  99. {
  100. lon = RAD2DEG(mctx / WGS84::A);
  101. lat = RAD2DEG(2 * atan(exp(mcty / WGS84::A)) - AO_PI / 2);
  102. }
  103. void proj::lonlat_to_mercator(const double& lon, const double& lat, double& mctx, double& mcty)
  104. {
  105. double lamb = DEG2RAD(lat);
  106. double phi = DEG2RAD(lon);
  107. // 墨卡托投影公式
  108. mctx = WGS84::A * phi;
  109. mcty = WGS84::A * log(tan(AO_PI / 4 + lamb / 2));
  110. }
  111. void proj::mercator_to_gauss(const double& mctx, const double& mcty, double& gx, double& gy, const proj::param& p)
  112. {
  113. double lon, lat;
  114. mercator_to_lonlat(mctx, mcty, lon, lat);
  115. lonlat_to_gauss(lon, lat, gx, gy, p);
  116. }
  117. void proj::gauss_to_mercator(const double& gx, const double& gy, double& mctx, double& mcty, const proj::param& p)
  118. {
  119. double lon, lat;
  120. gauss_to_lonlat(gx, gy, lon, lat, p);
  121. lonlat_to_mercator(lon, lat, mctx, mcty);
  122. }
  123. void proj::mercator_to_gauss(const double& central, const double& mctx, const double& mcty, double& gx, double& gy)
  124. {
  125. double lon, lat;
  126. mercator_to_lonlat(mctx, mcty, lon, lat);
  127. lonlat_to_gauss(central, lon, lat, gx, gy);
  128. }
  129. void proj::gauss_to_mercator(const double& central, const double& gx, const double& gy, double& mctx, double& mcty)
  130. {
  131. double lon, lat;
  132. gauss_to_lonlat(central, gx, gy, lon, lat);
  133. lonlat_to_mercator(lon, lat, mctx, mcty);
  134. }
  135. void proj::ecef_to_lonlat(const double& x, const double& y, const double& z, double& lon, double& lat, double& height)
  136. {
  137. // 计算经度
  138. lon = std::atan2(y, x);
  139. // 计算初始纬度估计
  140. double p = std::sqrt(x * x + y * y);
  141. double theta = std::atan2(z, p * (1 - WGS84::F));
  142. lat = std::atan2(z + WGS84::E2 * WGS84::B * std::pow(std::sin(theta), 3), p - WGS84::E2 * WGS84::B * std::pow(std::cos(theta), 3));
  143. // 迭代计算纬度,直到收敛
  144. double previousLatitude;
  145. do
  146. {
  147. previousLatitude = lat;
  148. double N = WGS84::A / std::sqrt(1 - WGS84::E2 * std::sin(lat) * std::sin(lat));
  149. height = p / std::cos(lat) - N;
  150. lat = std::atan2(z + WGS84::E2 * N * sin(lat), p);
  151. } while (std::fabs(lat - previousLatitude) > 1e-12); // 收敛条件
  152. // 将纬度和经度转换为度
  153. lat = RAD2DEG(lat);
  154. lon = RAD2DEG(lon);
  155. }
  156. void proj::lonlat_to_ecef(const double& lon, const double& lat, const double& height, double& x, double& y, double& z)
  157. {
  158. double lamb = DEG2RAD(lat);
  159. double phi = DEG2RAD(lon);
  160. // 计算N(曲率半径)
  161. double N = WGS84::A / std::sqrt(1 - WGS84::E2 * std::sin(lamb) * std::sin(lamb));
  162. // 计算XYZ坐标
  163. x = (N + height) * std::cos(lamb) * std::cos(phi);
  164. y = (N + height) * std::cos(lamb) * std::sin(phi);
  165. z = (WGS84::B * WGS84::B / (WGS84::A * WGS84::A) * N + height) * std::sin(lamb);
  166. }