/** ****************************************************************************** * @file : 拟合算法及功能函数 * @author : yall * @brief : * @attention : None * @date : 2025/6/18 ****************************************************************************** */ #include "Path_JC.h" #include "studio_geo_c.h" /** * 交换函数(自用) */ void swap(float *a, float *b) { float temp = *a; *a = *b; *b = temp; } /** * 角转弧 */ double deg2rad(double deg) { return deg * PI / 180.0; } /** * 累计距离 */ void cumdist(studio_line_c *line, float *s, unsigned int size){ for (int i = 1; i < size; i++) { float dx = line->data[i].x - line->data[i+1].x; float dy = line->data[i].y - line->data[i+1].y; s[i] = s[i - 1] + sqrtf(dx * dx + dy * dy); } } /** * 转笛卡尔(弧度简易版) */ void deg2Des(studio_line_c *line, unsigned int size) { // 计算差值 studio_point_c p_0 = studio_line_c_get_point(line,0); for (int i = 0; i < size; i++) { studio_point_c tmp; studio_point_c p_i = studio_line_c_get_point(line,i); tmp.x = p_i.x - p_0.x; tmp.y = p_i.y - p_0.y; studio_line_c_set_point(line, i, tmp); } // 转化成m for (int i = 0; i < size; i++) { studio_point_c tmp; studio_point_c p_i = studio_line_c_get_point(line,i); tmp.x = p_i.x * (PI / 180.0) * R_EN * cos(deg2rad(tmp.y)); tmp.y = p_i.y * (PI / 180.0) * R_EN; studio_line_c_set_point(line, i, tmp); } } /** * 中值滤波 */ void median_filter_2d(studio_line_c *input, studio_line_c *output, unsigned int size, int window_size) { int half = window_size / 2; studio_point_c window[window_size]; for (int i = 0; i < size; i++) { int k = 0; for (int j = i - half; j <= i + half; j++) { int idn = j; // 边界处理:复制边界值 if (idn < 0) idn = 0; if (idn >= size) idn = size - 1; window[k++] = input->data[idn]; } //排序(冒泡) for(int i = 0; i < window_size - 1; i++) { for(int j = 0; j < window_size - 1 - i; j++) { if(window[j].x > window[j + 1].x) { swap(&window[j].x, &window[j + 1].x); } if(window[j].y > window[j + 1].y) { swap(&window[j].y, &window[j + 1].y); } } } studio_line_c_add_point(output, window[window_size / 2]); } } /** * 残差滤波--计算量偏大 */ void var_filter(studio_line_c *in_before, studio_line_c *in_after, unsigned int size, float threshold) { // 残差 for (int i = 0; i < size; i++) { in_after->data[i].x = in_before->data[i].x - in_after->data[i].x; in_after->data[i].y = in_before->data[i].y - in_after->data[i].y; } // 方差--可优化存储 float mean_rx = 0, mean_ry = 0; for (int i = 0; i < size; i++) { mean_rx += in_after->data[i].x; mean_ry += in_after->data[i].y; } mean_rx /= size; mean_ry /= size; float std_rx = 0, std_ry = 0; for (int i = 0; i < size; i++) { std_rx += pow(in_after->data[i].x - mean_rx, 2); std_ry += pow(in_after->data[i].y - mean_ry, 2); } std_rx = sqrt(std_rx / size); std_ry = sqrt(std_ry / size); // 阈值判断 bool outliers[size]; for (int i = 0; i < size; i++) { outliers[i] = (fabs(in_after->data[i].x) > threshold * std_rx) || (fabs(in_after->data[i].y) > threshold * std_ry); } int idx = 0; for (int i = 0; i < size; i++) { if (outliers[i]) { studio_line_c_remove_point(in_before, idx); idx++; } } } /** * 样条插样 */ void spline_interpolation(float *s, studio_line_c *line, unsigned int size, studio_line_c *tmp, int set_outs) { // 输入检查 if (size < 2 ) { printf("erro...SPLINE"); return; } // 步长 float step = (s[size - 1] - s[0]) / (set_outs - 1); // 计算插值 int idx = 0; for (int i = 0; i < set_outs; i++) { float tar = s[0] + i * step; // 检索区间 while (idx < size - 1 && s[idx + 1] < tar) { idx++; } // 边界检查 if (tar <= s[0]) { tmp->data[i].x = line->data[0].x; tmp->data[i].y = line->data[0].y; } else if (tar >= s[size - 1]) { tmp->data[i].x = line->data[size - 1].x; tmp->data[i].y = line->data[size - 1].y; } else { // 插值计算 if (fabs(s[idx + 1] - s[idx]) < 1e-10) { tmp->data[i].x = (line->data[idx].x + line->data[idx+1].x) / 2.0; tmp->data[i].y = (line->data[idx].y + line->data[idx+1].y) / 2.0; // 取平均值 } else { tmp->data[i].x = line->data[idx].x + (line->data[idx+1].x - line->data[idx].x) * (tar - s[idx]) / (s[idx+1] + s[idx]); tmp->data[i].y = line->data[idx].y + (line->data[idx+1].y - line->data[idx].y) * (tar - s[idx]) / (s[idx+1] + s[idx]); } } } } /** 拟合过程 struct ArrayWrapper Path_fit(double data[MAX_POINTS][2], int window_size) { // 实际数据点数 int n = MAX_POINTS; // 提取经纬度数据 double longitude[MAX_POINTS], latitude[MAX_POINTS]; for (int i = 0; i < n; i++) { longitude[i] = data[i][0]; latitude[i] = data[i][1]; } // 计算与第一个点的经纬度差值 double delta_lon[MAX_POINTS], delta_lat[MAX_POINTS]; for (int i = 0; i < n; i++) { delta_lon[i] = longitude[i] - longitude[0]; delta_lat[i] = latitude[i] - latitude[0]; } // 转换为米单位坐标 double delta_x[MAX_POINTS], delta_y[MAX_POINTS]; for (int i = 0; i < n; i++) { delta_x[i] = delta_lon[i] * (PI / 180.0) * R_EN * cos(deg2rad(latitude[i])); delta_y[i] = delta_lat[i] * (PI / 180.0) * R_EN; } // 中值滤波 double x_filtered[MAX_POINTS], y_filtered[MAX_POINTS]; medfilt1(delta_x, x_filtered, n, window_size); medfilt1(delta_y, y_filtered, n, window_size); // 删除离群值 double residual_x[MAX_POINTS], residual_y[MAX_POINTS]; for (int i = 0; i < n; i++) { residual_x[i] = delta_x[i] - x_filtered[i]; residual_y[i] = delta_y[i] - y_filtered[i]; } double threshold_x = 0.1, threshold_y = 0.1; // 阈值 int outliers[MAX_POINTS] = {0}; for (int i = 0; i < n; i++) { if (fabs(residual_x[i]) > threshold_x || fabs(residual_y[i]) > threshold_y) { outliers[i] = 1; } } double x_cleaned[MAX_POINTS], y_cleaned[MAX_POINTS]; int cleaned_count = 0; for (int i = 0; i < n; i++) { if (!outliers[i]) { x_cleaned[cleaned_count] = x_filtered[i]; y_cleaned[cleaned_count] = y_filtered[i]; cleaned_count++; } } // 参数化数据点:计算累积距离 double dist[MAX_POINTS] = {0}; for (int i = 1; i < cleaned_count; i++) { dist[i] = sqrt(pow(x_cleaned[i] - x_cleaned[i - 1], 2) + pow(y_cleaned[i] - y_cleaned[i - 1], 2)); } double cumdist[MAX_POINTS] = {0}; for (int i = 1; i < cleaned_count; i++) { cumdist[i] = cumdist[i - 1] + dist[i]; } // 生成均匀分布的参数值 int num_points = 10000; double t_uniform[num_points]; for (int i = 0; i < num_points; i++) { t_uniform[i] = (cumdist[cleaned_count - 1] * i) / (num_points - 1); } // 样条插值拟合 double x_fit[num_points], y_fit[num_points]; spline_interpolation(cumdist, x_cleaned, cleaned_count, t_uniform, x_fit, num_points); spline_interpolation(cumdist, y_cleaned, cleaned_count, t_uniform, y_fit, num_points); // 均匀采样30个点 int num_uniform = 30; double t_uniform_samples[num_uniform]; for (int i = 0; i < num_uniform; i++) { t_uniform_samples[i] = (cumdist[cleaned_count - 1] * i) / (num_uniform - 1); } double x_uniform[num_uniform], y_uniform[num_uniform]; spline_interpolation(cumdist, x_cleaned, cleaned_count, t_uniform_samples, x_uniform, num_uniform); spline_interpolation(cumdist, y_cleaned, cleaned_count, t_uniform_samples, y_uniform, num_uniform); struct ArrayWrapper xy; // 输出均匀采样的点 for (int i = 0; i < num_uniform; i++) { xy.data_xy[i][0] = x_uniform[i]; xy.data_xy[i][1] = y_uniform[i]; } return xy; } */